ØMagnet

Programming Generative AI

Torrent Hash :
a83722eb98ed43f80334c3ff41d57025808a2264
Content Size :
4.03 GB
Date :
2025-02-20
Short Magnet :
Short Magnet
https://0mag.biz/!8BkJDj QR code
Files ( 232 )size
Lesson 2 PyTorch for the Impatient/016. 2.15 Linear Regression with PyTorch.mp4129.91 MB
Lesson 6 Connecting Text and Images/016. 6.15 Playing with Prompts.mp4120.71 MB
Lesson 1 The What, Why, and How of Generative AI/009. 1.8 Introduction to Google Colab.mp4115.35 MB
Lesson 4 Demystifying Diffusion/005. 4.4 Generating Images with Diffusers Pipelines.mp497.61 MB
Lesson 4 Demystifying Diffusion/006. 4.5 Deconstructing the Diffusion Process.mp481.29 MB
Lesson 7 Post-Training Procedures for Diffusion Models/025. 7.24 Video-Driven Frame-by-Frame Generation with SDXL Turbo.mp478.73 MB
Lesson 7 Post-Training Procedures for Diffusion Models/024. 7.23 Text-Guided Image-to-Image Translation.mp472.66 MB
Lesson 7 Post-Training Procedures for Diffusion Models/018. 7.17 Depth and Edge-Guided Stable Diffusion with ControlNet.mp468.81 MB
Lesson 1 The What, Why, and How of Generative AI/002. 1.1 Generative AI in the Wild.mp467.53 MB
Lesson 4 Demystifying Diffusion/007. 4.6 Forward Process as Encoder.mp467.45 MB
Lesson 7 Post-Training Procedures for Diffusion Models/004. 7.3 Quantitative Evaluation of Diffusion Models with Human Preference Predictors.mp463.47 MB
Lesson 2 PyTorch for the Impatient/018. 2.17 Layers and Activations with torch.nn.mp462.29 MB
Lesson 7 Post-Training Procedures for Diffusion Models/017. 7.16 Creating Edge and Depth Maps for Conditioning.mp458.39 MB
Lesson 1 The What, Why, and How of Generative AI/006. 1.5 Formalizing Generative Models.mp456.96 MB
Lesson 5 Generating and Encoding Text with Transformers/008. 5.7 Visualizing and Understanding Attention.mp456.29 MB
Lesson 2 PyTorch for the Impatient/009. 2.8 Effortless Backpropagation with torch.autograd.mp455.79 MB
Lesson 7 Post-Training Procedures for Diffusion Models/003. 7.2 Manual Evaluation of Stable Diffusion with DrawBench.mp454.21 MB
Lesson 2 PyTorch for the Impatient/011. 2.10 Working with Devices.mp453.56 MB
Lesson 5 Generating and Encoding Text with Transformers/009. 5.8 Turning Words into Vectors.mp451.75 MB
Lesson 7 Post-Training Procedures for Diffusion Models/015. 7.14 Inference with Dreambooth to Create Personalized AI Avatars.mp451.16 MB
Lesson 3 Latent Space Rules Everything Around Me/005. 3.4 Working with Images in Python.mp451.03 MB
Lesson 4 Demystifying Diffusion/009. 4.8 Interpolating Diffusion Models.mp449.31 MB
Lesson 1 The What, Why, and How of Generative AI/005. 1.4 How Machines Create.mp449.17 MB
Lesson 5 Generating and Encoding Text with Transformers/004. 5.3 Generating Text with Transformers Pipelines.mp448.1 MB
Lesson 7 Post-Training Procedures for Diffusion Models/014. 7.13 Dreambooth Fine-Tuning with Hugging Face.mp447.62 MB
Lesson 2 PyTorch for the Impatient/019. 2.18 Multi-layer Feedforward Neural Networks (MLP).mp446.68 MB
Lesson 7 Post-Training Procedures for Diffusion Models/008. 7.7 Parameter Efficient Fine-Tuning with LoRA.mp445.43 MB
Lesson 5 Generating and Encoding Text with Transformers/002. 5.1 The Natural Language Processing Pipeline.mp444.54 MB
Lesson 5 Generating and Encoding Text with Transformers/007. 5.6 Transformers are Just Latent Variable Models for Sequences.mp442.94 MB
Lesson 7 Post-Training Procedures for Diffusion Models/010. 7.9 Inference with LoRAs for Style-Specific Generation.mp442.53 MB
Lesson 1 The What, Why, and How of Generative AI/007. 1.6 Generative versus Discriminative Models.mp442.33 MB
Lesson 1 The What, Why, and How of Generative AI/004. 1.3 Multitudes of Media.mp441.42 MB
Lesson 6 Connecting Text and Images/005. 6.4 Embedding Text and Images with CLIP.mp441.24 MB
Lesson 6 Connecting Text and Images/007. 6.6 Semantic Image Search with CLIP.mp440.9 MB
Lesson 3 Latent Space Rules Everything Around Me/018. 3.17 Exploring Latent Space.mp440.63 MB
Lesson 3 Latent Space Rules Everything Around Me/007. 3.6 Convolutional Neural Networks in PyTorch.mp440.25 MB
Lesson 5 Generating and Encoding Text with Transformers/003. 5.2 Generative Models of Language.mp439.8 MB
Lesson 2 PyTorch for the Impatient/006. 2.5 Tensors in PyTorch.mp438.73 MB
Lesson 6 Connecting Text and Images/003. 6.2 Vision-Language Understanding.mp438.14 MB
Lesson 4 Demystifying Diffusion/011. 4.10 Image Restoration and Enhancement.mp438.06 MB
Lesson 6 Connecting Text and Images/012. 6.11 Stable Diffusion Deconstructed.mp437.8 MB
Lesson 5 Generating and Encoding Text with Transformers/006. 5.5 Decoding Strategies.mp437.7 MB
Lesson 7 Post-Training Procedures for Diffusion Models/023. 7.22 Comparing SDXL and SDXL Turbo.mp437.58 MB
Lesson 3 Latent Space Rules Everything Around Me/019. 3.18 Latent Space Interpolation and Attribute Vectors.mp437.49 MB
Lesson 2 PyTorch for the Impatient/003. 2.2 The PyTorch Layer Cake.mp436.72 MB
Lesson 3 Latent Space Rules Everything Around Me/008. 3.7 Components of a Latent Variable Model (LVM).mp436.54 MB
Lesson 7 Post-Training Procedures for Diffusion Models/019. 7.18 Understanding and Experimenting with ControlNet Parameters.mp435.82 MB
Lesson 3 Latent Space Rules Everything Around Me/017. 3.16 Training a VAE with PyTorch.mp435.49 MB
Lesson 3 Latent Space Rules Everything Around Me/002. 3.1 Representing Images as Tensors.mp435.04 MB
Lesson 3 Latent Space Rules Everything Around Me/016. 3.15 Transforming an Autoencoder into a VAE.mp434.86 MB

Related Torrents:

23.star7761.48 GB
(C92) [ひなたぼっこ俱楽部 (ふらふら)] 優花里さんでいっぱい (ガールズ&パンツァー) [中国翻訳].zip28.52 MB
58.snis3671.17 GB
张学友 1985-1999大碟全集(20Album) [FLAC]5.69 GB
CzechCouples15.83 GB
GASO-00813.86 GB